Slide Biography scroll down

Vincent Darcos

Vincent Darcos

Research engineer, Faculty of pharmacy, University of Montpellier

Vincent is a CNRS Research Engineer at the Institute of Biomolecules Max Mousseron (IBMM). After defending his PhD in the field of organic chemistry (2000, University of Bordeaux), he joined the group of Prof. Dave Haddleton at the University of Warwick in UK (Marie-Curie Fellowship, 2000-2002). Then, he moved for a one-year post-doctoral fellow at the University of Bordeaux (LCPO) in the group of Dr. Yves Gnanou (Rhodia funding). In 2004, he joined the IBMM and defended his HDR in 2017. His research interests focus in the field of macromolecular engineering in order to develop original polymeric biomaterials for health applications.
His research interests focus in the field of macromolecular engineering in order to develop original polymeric biomaterials for health applications. Some of his current projects focus on the development of new drug delivery systems, implantable medical devices for bone reconstruction, or bioconjugates for medical diagnosis. He is the co-author of 42 publications and 2 patents in the field of polymer chemistry.
He’s in charge of the “polymer” facility of the SynBio3 platform (IBISA label & ISO9001 certification) dedicated to assist the development of research programs in life science providing biomolecules and polymers of biological and pharmaceutical interest.


(+33) 0411759704

5 recent publications:

El Habnouni, S.; Darcos, V.; Coudane, J., Synthesis and Ring Opening Polymerization of a New Functional Lactone, alpha-Iodo-epsilon-caprolactone: A Novel Route to Functionalized Aliphatic Polyesters. Macromolecular Rapid Communications 2009, 30 (3), 165-169.

Bakkour, Y.; Darcos, V.; Li, S. M.; Coudane, J., Diffusion ordered spectroscopy (DOSY) as a powerful tool for amphiphilic block copolymer characterization and for critical micelle concentration (CMC) determination. Polymer Chemistry 2012, 3 (8), 2006-2010.

Coumes, F.; Huang, C. Y.; Huang, C. H.; Coudane, J.; Domurado, D.; Li, S. M.; Darcos, V.; Huang, M. H., Design and Development of Immunomodulatory Antigen Delivery Systems Based on Peptide/PEG-PLA Conjugate for Tuning Immunity. Biomacromolecules 2015, 16 (11), 3666-3673.

Younis, M.; Darcos, V.; Paniagua, C.; Ronjat, P.; Lemaire, L.; Nottelet, B.; Garric, X.; Bakkour, Y.; El Nakat, J. H.; Coudane, J., MRI-visible polymer based on poly(methyl methacrylate) for imaging applications. Rsc Advances 2016, 6 (7), 5754-5760.

Coumes, F.; Beaute, L.; Domurado, D.; Li, S.; Lecommandoux, S.; Coudane, J.; Darcos, V., Self-assembly of well-defined triblock copolymers based on poly(lactic acid) and poly(oligo(ethylene glycol) methyl ether methacrylate) prepared by ATRP. RSC Advances 2016, 6 (58), 53370-53377

Self-assembly of well-defined triblock copolymers based on poly(lactic acid) and poly(oligo(ethylene glycol) methyl ether methacrylate) prepared by ATRP

 RSC Adv. 6, 53370–53377 (2016)

Coumes, F., Beaute, L., Domurado, D., Li, S., Lecommandoux, S., Coudane, J. & Darcos, V.


Self-assembly of a series of amphiphilic poly(oligo(ethylene glycol) methyl ether methacrylate)-block-poly(lactic acid)-block-poly(oligo(ethylene glycol) methyl ether methacrylate) (P(OEGMA)-b-PLLA-b-P(OEGMA)) copolymers was investigated. The copolymers were synthesized by a combination of ring-opening polymerization (ROP) of L-lactide and atom transfer radical polymerization (ATRP) of oligo ethylene glycol methyl ether methacrylate (OEGMA). The resulting brush-like triblock copolymers were characterized by 1H NMR and size exclusion chromatography. Self-assembly behavior of the copolymers in deionized water was investigated by fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The critical aggregation concentration ranged from 50 to 160 mg L−1 depending on the composition. The diameter of the nanoparticles (NPs) was determined by DLS and TEM. Images showed that these nano-sized objects displayed spherical and worm-like morphology with a length increasing with the hydrophilic content. Preliminary studies of drug loading and drug release with a water-insoluble model drug, namely curcumin, showed that these NPs are potential candidates for drug delivery carriers.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true& }}

MRI-visible polymer based on poly(methyl methacrylate) for imaging applications

RSC Adv. 6, 5754–5760 (2016).

Younis, M., Darcos, V., Paniagua, C., Ronjat, P., Lemaire, L., Nottelet, B., Garric, X., Bakkour, Y., El Nakat, J. H. & Coudane, J.



Macromolecular contrast agents are very attractive to afford efficient magnetic resonance imaging (MRI) visualization of implantable medical devices. In this work, we report on the grafting of a Gd-based DTPA contrast agent onto a poly(methyl methacrylate) derivative backbone by combining free radical polymerization and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Using free radical polymerization, poly(methyl methacrylate-co-propargyl methacrylate) copolymers were prepared with a control of the ratio in propargyl methacrylate monomer units. The synthesis of a new azido mono-functionalized DTPA ligand was also reported and characterized by 1H NMR and mass spectroscopy. After complexation with gadolinium, this ligand has been grafted on the polymer backbone by click chemistry reaction. The obtained macromolecular contrast agent was then coated on a polypropylene mesh using the airbrushing technique and the mesh was assessed for MRI visualization at 7 teslas. The polymeric contrast agent was also tested for cytocompatibility and stability to assess its suitability for biomedical applications.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true& }}

Biocompatibility of thermo-responsive PNIPAAm-PLLA-PNIPAAm triblock copolymer as potential drug carrier.

Polym. Adv. Technol. 26, 1567–1574 (2015)

Su, F., Shen, X., Hu, Y., Darcos, V. & Li, S



This work aims to evaluate the cytocompatibility and hemocompatibility of thermo‐responsive polymers as potential drug carrier. Thermo‐responsive poly(N‐isopropyl acrylamide) (PNIPAAm) and poly(N‐isopropyl acrylamide)‐poly(l‐lactide)‐poly(N‐isopropyl acrylamide) (PNIPAAm‐PLLA‐PNIPAAm) triblock copolymer were synthesized by atom transfer radical polymerization using ethyl α‐bromoisobutyrate or Br‐PLLA‐Br as initiator under mild conditions. The self‐assembly and thermo‐responsive properties of the copolymer in aqueous medium were investigated by critical micelle concentration, dynamic light scattering, transmission electron microscopy, and lower critical solution temperature measurements. The critical micelle concentration was 0.014 mg ml−1. Dynamic light scattering and transmission electron microscopy results show that the micelles are spherical in shape with sizes between 20 and 40 nm. The lower critical solution temperature of PNIPAAm and PNIPAAm‐PLLA‐PNIPAAm is 34.8°C and 32.8°C, respectively. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay was carried out to evaluate the cytotoxicity of polymers, and the hemocompatibility was assessed from hemolysis ratio and plasma recalcification time measurements. The results show that PNIPAAm‐PLLA‐PNIPAAm presents outstanding biocompatibility and could be promising for applications in targeted drug delivery.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true& }}

Aliphatic polyesters for medical imaging and theranostic applications

Eur. J. Pharm. Biopharm. 97, 350–370 (2015)

Nottelet, B., Darcos, V. & Coudane, J



Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(e-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given.  Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more details we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true& }}