top

Hélène Van Den Berghe

Hélène Van Den Berghe

Assistant Professor, Faculty of Pharmacy, University of Montpellier

Hélène graduated in Organic Chemistry at the Universtiy of Montpellier (France). She completed her PhD in 2007 under the supervision of Pr J. Coudane in the Artificial Biopolymers Department of IBMM in Montpellier, working on the synthesis of biodegradable polymers for tissue engineering and sustained drug release applications. She then joined the group of Pr Rachel Auzély in the CERMAV (Grenoble, France) as a post-doc to work on the chemical modifications of polysaccharides. Hélène moved to England in 2010 in the Dove group at the Warwick University before moving at the University of Lille (France) to work as a post-doctoral fellow with Pr Bernard Martel developing multi-drug stents based on polysaccharide layer-by-layer assemblies. In 2011, she became Associate Professor in the Faculty of Pharmacy of Montpellier in the Artificial Biopolymers Department of IBMM. Her research is dedicated to the synthesis and chemical modification of synthetic and natural biodegradable polymers for biomedical applications including : nano-systems for anti-cancer drug release, anti-adhesive polymeric membranes for orthopedic surgery, synthesis of amphiphilic copolymers for environnemental applications.   

Contact:

xxx

5 recent publications:

xxx

Congratulations to Hélène Van den Berghe for obtaining the HDR

This is custom heading element

Helene Van den berghe

We are proud to celebrate an important moment in the life of our team. Today, we would like to extend our warmest congratulations to Hélène Van den Berghe, assistant professor at University of Montpellier on obtaining the HDR. We wish you the best for the rest of your carrier.

Bravo!

Release kinetics of dexamethasone phosphate from porous chitosan: comparison of aerogels and cryogels

This is custom heading element

Biomacromolecules XXX, XXX (2023)

Coraline Chartier, Sytze Buwalda, Blessing C. Ilochonwu, Hélène Van Den Berghe, Audrey Bethry, Tina Vermonden, Martina Viola, Benjamin Nottelet, Tatiana Budtova

ABSTRACT

Porous chitosan materials as potential wound dressings were prepared via dissolution of chitosan, nonsolvent-induced phase separation in NaOH−water, formation of a hydrogel, and either freeze-drying or supercritical CO2 drying, leading to “cryogels” and “aerogels”, respectively. The hydrophilic drug dexamethasone sodium phosphate was loaded by impregnation of chitosan hydrogel, and the release from cryogel or aerogel was monitored at two pH values relevant for wound healing. The goal was to compare the drug-loading efficiency and release behavior from aerogels and cryogels as a function of the drying method, the materials’ physicochemical properties (density, morphology), and the pH of the release medium. Cryogels exhibited a higher loading efficiency and a faster release in comparison with aerogels. A higher sample density and lower pH value of the release medium resulted in a more sustained release in the case of aerogels. In contrast, for cryogels, the density and pH of the release medium did not noticeably influence release kinetics. The Korsmeyer−Peppas model showed the best fit to describe the release from the porous chitosan materials into the different media.

Preliminary in vivo study of biodegradable PLA-PEU-PLA anti-adhesion membranes in a rat Achilles tendon model of peritendinous adhesions

BIOMATERIALS SCIENCE 2022,10, 1776-1786

Hadda, Zebiri, Van Den Berghe Helene, Paunet Tom, Wolf-Mandroux Aurelie, Bethry Audrey, Taillades Hubert, Yohan Jean Noel, Yohan Jean Noël, Nelly Pirot, Botteron Catherine, Chammas Michel, Chammas Pierre-Emmanuel and Garric Xavier

 

 ABSTRACT

Peritendinous adhesions are complications known to occur up to 6 weeks after surgery and cause chronic pain and disability. Anti-adhesion barriers are currently the best option for prevention. In a previous study, we designed two biodegradable membranes, D-PACO1 and D-PACO2, based on new triblock copolymers and conducted in vitro evaluations. The membranes maintained filmogenic integrity, had degradation rates that promoted anti-adhesion and were biocompatible, suggesting their safe and effective use as anti-adhesion devices. To test this hypothesis, we conducted a preliminary in vivo study in a rat model of peritendinous adhesions and evaluated the membranes’ degradation rates, tendon healing and anti-adhesion effect compared to non-surgical and surgical control groups 2 and 10 weeks after surgery. Macroscopic evaluation showed membranes were effective in reducing the extent and severity of adhesions. Membranes acted as physical barriers at 2 weeks and underwent a complete or significant biodegradation at 10 weeks. D-PACO2 had a longer degradation rate compared to D-PACO1, was more effective in reducing adhesions and is expected to be more effective in promoting tendon healing. The tendency of D-PACO1 to promote tendon healing while D-PACO2 did not interfere with healing highlights the need to redesign the porosity of the D-PACO membranes for optimal nutrient diffusion, while maintaining their anti-adhesion effect and clinical usability. Preliminary findings revealed that adhesions form beyond the 6 weeks cited in the literature. In this study, adhesion formation continued for up to 10 weeks, underlining the need to increase the experimental period and sample size of future experiments evaluating anti-adhesion membranes.

Syntheses of biodegradable graft copolymers from sodium caseinate and poly 3 -caprolactone or poly lactic acid. Applications to the compatibilization of sodium caseinate/polyester blends

Materials Today Chemistry 27 (2023) 101345

L.Viora, T. Tichané, A. Taguet, X. Garric, J. Coudane, H. Van Den Berghe

 ABSTRACT

Casein (and its sodium salt, sodium caseinate, SC) is an inexpensive natural milk protein that is used as a biodegradable biomaterial, especially to produce packaging films. However, to enhance some of its properties, it needs to be blended with other polymers, which should preferably be biodegradable such as poly lactic acid (PLA) and poly ε-caprolactone (PCL). New SC-g-PLA and SC-g-PCL graft copolymers have been prepared and unambiguously characterized, in particular by 1H and DOSY NMR. The grafting degrees are high (between 24 and 35% by weight) and result in variations of properties, such as hydrophobicity and thermal properties. The microstructures of SC/PLA and SC/PCL blends were studied and compared, with and without the addition of the SC-g-PLA and SC-g-PCL copolymers to test the compatibilization capacity of these new biodegradable copolymers.