top

Slide Biography scroll down

Coline Pinese

Coline Pinese

Associate professor, Faculty of Pharmacy, University of Montpellier

Coline has been working at the chemistry/biology interface since her doctorate CIFRE obtained in 2014. Her objective was to design hybrid collagen/PLA based copolymer biomaterials for ligament regeneration. She then continued her work at the interface by studying bioactive surfaces functionalized by peptides (antibacterial, osteointegration, wound healing…). Then she became involved into spinal cord regeneration through an association mRNA or siRNA/ nanofibers at Nayang Technological University, Singapore. She finally joined the DBA team as an Associate Professor to develop polymer/peptide hybrid nanomaterials.

Contact:

tel: +33 4 11 75 97 10

coline.pinese@umontpellier.fr

5 recent publications:

  • W.Ong, C. Pinese, SY Chew, Scaffold-mediated  Sequential  Drug/Gene  Delivery  to  Promote  Nerve  Regeneration  and Remyelination following Traumatic Nerve Injuries, Advanced Drug Delivery Reviews (2018) (IF=17.28)
  • Pinese, JQ. Lin, U. Milbreta, Y. Wang, KW. Leong, SY Chew, Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomater. 76, 164–177 (2018). (IF=6.38)
  • Gangolphe, S. Déjean, A. Bethry, S. Hunger, C. Pinese, X. Garric, F. Bossard, B. Nottelet, Degradable multi(aryl-azide) star copolymer as universal photo-crosslinker for elastomeric scaffolds, Materials Today Chemistry 12, (2019) 209-221 (IF=NA)

Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering

Materials Science and Engineering: C Volume 129, October 2021, 112339

Louis Gangolphe, Christopher Y.Leon Valdivieso, Benjamin Nottelet, Stéphane Déjean, Audrey Bethry, Coline Pinese, Frédéric Bossard and Xavier Garric

 

Electrospun scaffolds combine suitable structural characteristics that make them strong candidates for their use in tissue engineering. These features can be tailored to optimize other physiologically relevant attributes (e.g. mechanical anisotropy and cellular affinity) while ensuring adequate degradation rates of the biomaterial. Here, we present the fabrication of microstructured scaffolds by using a combination of micropatterned electrospinning collectors (honeycomb- or square-patterned) and poly(lactic acid) (PLA)-based copolymers (linear or star-shaped). The resulting materials showed appropriate macropore size and fiber alignment that were key parameters to enhance their anisotropic properties in protraction. Moreover, their elastic modulus, which was initially similar to that of soft tissues, gradually changed in hydrolytic conditions, matching the degradation profile in a 2- to 3-month period. Finally, honeycomb-structured scaffolds exhibited enhanced cellular proliferation compared to standard electrospun mats, while cell colonization was shown to be guided by the macropore contour. Taking together, these results provide new insight into the rational design of microstructured materials that can mimic the progressive evolution of properties in soft tissue regeneration

Star-poly(lactide)-peptide hybrid networks as bioactive materials

 

European Polymer Journal Volume 139, 5 October 2020, 109990

L.V. Arsenie, C. Pinese, A. Bethry, L. Valot, P. Verdie, B. Nottelet, G. Subra, V. Darcos, X. Garric

ABSTRACT

Abstract Poly(lactide) (PLA) is a widely used biomaterial in many biomedical applications. However, it is inert and therefore lacks bioactivity, which is a major drawback in addressing tissue regeneration issues. This work aims to develop new implantable biomaterials composed of PLAs functionalized with bioactive peptides. For that purpose, we set up an original synthesis based on star-PLA bearing triethoxysilyl propyl groups (PLA-PTES) and bifunctional silylated peptides that react together via sol-gel process to create a bioactive network. We demonstrate that the molecular weight of the PLA and the quantity of peptide have a large influence on the crosslinking efficiency, the mechanical properties and the biodegradability of the resulting materials. The presence of peptide increases the crosslinking efficiency of the networks resulting in more rigid networks with stable mechanical properties up to 8 weeks. At last, the potential of this new type of hybrid biomaterials for soft tissue engineering was demonstrated through cells adhesion assays that showed a significant enhancement of fibroblasts adhesion

Star-poly(lactide)-peptide hybrid networks as bioactive materials

Star-poly(lactide)-peptide hybrid networks as bioactive materials

Direct synthesis of peptide-containing silicone. A new way for bioactive materials

Chem. Eur. J. 10.1002/chem.202001571

Ahmad Mehdi, Martin Julie, Mohammad Wehbi, Cecile Echalier, Sylvie hunger, Audrey Bethry, Xavier garric, coline Pinese, jean Martinez, Lubomir vezenkov, and gilles subra

ABSTRACT

A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane and either Si-vinyl or Si-H functionalized monomers. Functionalized silicone oils were first obtained and then after hydrosilylation cross-linking, bioactive PDMS based materials were straightforward obtained. The introduction of an antibacterial peptide yields PDMS materials showing an interesting activity against Staphylococcus Aureus. In the same way, RGD ligands-containing PDMS demonstrated improved cell adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true&link=url%3Ahttps%253A%252F%252Fibmmpolymerbiomaterials.com%252Fpublications%7C%7C%7C }}

Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAP‐Dependent Regulation

Small 2020, 2003656

William Ong, Nicolas Marinval, Junquan Lin, Mui Hoon Nai, Yee-Song Chong, Coline Pinese, Sreedharan Sajikumar, Chwee Teck Lim, Charles Ffrench-Constant, Marie E. Bechler, and Sing Yian Chew

ABSTRACT

A key hallmark of many diseases, especially those in the central nervous system (CNS), is the change in tissue stiffness due to inflammation and scarring. However, how such changes in microenvironment affect the regenerative process remains poorly understood. Here, a biomimicking fiber platform that provides independent variation of fiber structural and intrinsic stiffness is reported. To demonstrate the functionality of these constructs as a mechanotransduction study platform, these substrates are utilized as artificial axons and the effects of axon structural versus intrinsic stiffness on CNS myelination are independently analyzed. While studies have shown that substrate stiffness affects oligodendrocyte differentiation, the effects of mechanical stiffness on the final functional state of oligodendrocyte (i.e., myelination) has not been shown prior to this. Here, it is demonstrated that a stiff mechanical microenvironment impedes oligodendrocyte myelination, independently and distinctively from oligodendrocyte differentiation. Yes-associated protein is identified to be involved in influencing oligodendrocyte myelination through mechanotransduction. The opposing effects on oligodendrocyte differentiation and myelination provide important implications for current work screening for promyelinating drugs, since these efforts have focused mainly on promoting oligodendrocyte differentiation. Thus, the platform may have considerable utility as part of a drug discovery program in identifying molecules that promote both differentiation and myelination.

{{ vc_btn: title=Back+to+publications&style=3d&shape=square&color=black&size=sm&align=center&button_block=true&link=url%3Ahttps%253A%252F%252Fibmmpolymerbiomaterials.com%252Fpublications%7C%7C%7C }}